讀取中
杜宜殷老師團隊新創奈米肥料提升光合作用速率 2021/04/29

本系杜宜殷老師團隊新創奈米肥料提升光合作用速率 研究成果榮登國際期刊

 

太陽光是綜合了不同顏色光譜的光源,不同顏色的光具有不同波長,而植物光合作用是利用葉綠素吸收光能,但葉綠素僅對特定波長範圍有吸收波峰。換句話說,植物光合作用的光能僅利用到太陽光小部分波長的能量。如果其他波長光也可被光合作用運用,多捕捉到的能量提升便能促進植物生長。本系杜宜殷教授與本校化學系劉如熹教授、中央研究院基因體中心蕭宏昇教授及中國文化大學生物科技研究所黃鵬林教授合作進行跨領域研究,利用近紅外光奈米顆粒,捕捉原本葉綠素無法利用的波長,光轉換為光合作用可吸收之光譜範圍,提高植物光合作用的速率,進而提高植物生長,成功開發奈米肥料。研究結果榮登《應用化學》期刊 (Angewandte Chemie)


奈米粒子吸收紫外光與部分可見光,能量轉換為紅光與

近紅外光發出,增加光合系統可吸收之光能

 

近年來,奈米技術於農業生產的應用,除了特定放射波長之照明可提升植物的光合作用效率外,還可施加不同功能之奈米顆粒促進植物中養分運送、種子發芽等。園藝系之跨領域團隊,將近紅外光螢光粉縮限於中孔洞二氧化矽奈米粒子之孔洞中施予小白菜,經其光轉換,將紫外光至可見光轉換成紅光及近紅外光,可同時激活植物光合作用中光合系統III之反應中心,不僅可促進植物生長,也同時進行動物測試評估。研究結果呈現,施用此奈米粒子可增加植物的鮮重與葉綠素含量、提升光合作用電子傳遞速率、有效降低植物中硝酸鹽含量,並兼具追蹤螢光影像的效果,可發展為新一代奈米螢光肥料。

 

 施用近紅外光奈米肥料可增加植物的鮮重及葉綠素

含量,並提升光合作用電子傳遞速率。

 

 

此文章發表於《應用化學》期刊Angew. Chem. 2021, 133, 162019 IF=12.959

研究全文:https://doi.org/10.1002/ange.202015659

 

 

 

 

Invention of a Noval Nano Fertilizer: Using Nanoparticle to Promote Dual Photosystem

 

 

Sunlight composes a spectrum of colors corresponding to wavelengths of light. Plants evolve photosynthesis that employes chlorophylls for absorbing light energy, but chlorophylls absorb light only limited to certain range of wavelengths. In other words, light energy harvested by plants for photosynthesis is the energy from a small portion of sunlight. If additional wavelengths of light is able to utilize for photosynthesis, the light energy harvesting would be increased and subseqenetly promote plant growth. In this reported study, Prof. Dr. Yi-Yin Do at Department of Horticulture and Landscape Architecture, NTU, Prof. Dr. Ru-Shi Liu at Department of Chemistry, NTU, Prof. Dr. Michael Hsiao at Genomics Research Center, Academia Sinica, and Prof. Dr. Pung-Ling Huang at Graduate Institute of Biotechnology, Chinese Culture University worked together on developing nanoparticle that absorbs light with wavelengths not used by chlorophylls and converts to light spectrum for photosynthesis. Application of the nanoparticle enhances photosynthetic ability and growth of plants. This invention of a novel nano fertilizer is published in Angewandte Chemie.

 

The nanoparticle absorbs UV-visible light and converses the light energy to emit red and near-infrared, and thus promotes the dual photosystem.

 

 

In this decade, nanotechnology has developed various applications for agriculture. Other than using nanoparticles to increase light harvesting efficiency as mentioned, nanoparticles have been used to improve nutrient transportation in plants and improve seed germination. In the study mentioned above, the interdisciplinary research group developed a near-infrared (NIR) nanophosphor embedded with mesoporous silica nanoparticle to enhance the photosynthetic ability of Brassica rapa spp. chinensis. The broad excitation of the nanophosphor allowed the conversion of extra light into near-infrared light and thus promoted dual photosystem of plants. The fresh weight, chlorophyll content, and the electron transfer rate of photosynthesis of plants increased. The addition of nanoparticles effectively reduced nitrate content in the plants. Animal model was also used to explore the effects of the nanophosphor whose distribution could be tracked by monitoring its NIR emission in animal tissues. It demonstrates that this nanophosphor can be potentially utilized in plant growth as a novel nano fertilizer.

 

Application of the novel nearinfrared nano fertilizer is effective to promote fresh weight, chlorophyll content, and the electron transfer rate of photosynthesis of plants.

 

 

Angew. Chem2021133, 1−62019 IF=12.959

 

More information: https://doi.org/10.1002/ange.202015659